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ABSTRACT

A technique is developed for the synthesis and
design of a distributed parameter system guiding waves
from one point in space to another, The parameter
distributions are assumed to be unrestricted except
for the upper andllower bounds resuIting from the
imposition of physical realizability. The problem is
similar to the "sensitivity" problem encountered in
the optimal control of the systems, An improved version
of the First Order Gradient Technique is used to obtain
the optimal distributions of the parameters, The First
Order Gradient Technique is sensitivé-to the form of
the arbitrary distributions assumed at the start of
the iterations, This technique has serious convergence
problems associated with it, The problem is particularly
severe and is encountered in the "éingular" optimal
control problems, The algorithm devised here improves
the First Order Gradient Technique so that it becomes“
less sensitive to the initial assumed distributions . |
and virtually eliminates the convergence problems
generated because of the bounds on the parameter distri-,
butions, |

A transmission line with‘distributed series r
- shunt ¢ is a particular case of the distributed

3

parameter system, The optimal design of a feedback



network, for a phase-shift oscilltor, employing thin
film circuit is a successful example of the application
of the Improved Gradient Technique, These distributions

have been obtained by the use of a Hybrid Computer,



INTRODUCTION

vThg design of a feedback network for a phasé'shift
oscillator has been a topic of a number of studies. As shown
in a very basic block diagram (Fig. 1), the frequency sensi-
tive feedback circuit has to provide a proper gain and phase
shift relationship so that the system may oscillate.
Assuming that the amplifier has phase-shift of 180 degrees,
the feedback circuit has to providé an additional 180 degree
phase shift in order to get the conditions for oscillation.
One other usual requirement of the feedback circuit is. that
the attenuation during the transmission of the signal should
be minimum, since the total gain around the loop should be

unity. This lowers the gain requirements of the amplifier.

> ) AMP / S
INPUT X ‘i OUTPUT

FEEDBACK CIRCUITS

‘Fig,.l
A three section lumped parameter uniform resistance
capacitance network producing 180 degree phase-shift givesl
Aan attenuation of 29. Johnson2 has shown that the circuit in
Fig. 2 gives, in the limit, the attenuation of 8 as K tends
to infinity. He also showed that a unifOrmly distributed-
séries r, parallel c-network would produce an attenuation of

/ ‘
11.6. Increasing the number of sections in the lumped para-



meter circuit helps to reduce the attenuation. A limiting
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caseé is obviously a distributed rc transmission line. Edson3

finds that "unfortﬁnately, the analysis of multiple-section
lumped networks is exceedingly complicated and tedious ....

It is fouﬁd that useful inferences may be drawn from the
limiting case in which the number of sections becomes infinite
and the network becomes a smoothly tapered transmission line".
He assumed the exponential variation of the parameters corre-

sponding to

_ r(x) = Reika
riy Loo ,
WA — T W ey T
c(x) = Ce+2kX
I
Vin! M (%) = 0
Fig. 3 B

Edson obtained the curves for attenuation at 180 degree phase-
shift as a function of parameters R,C, taper k and iine
length L. It can be easily shown that as k approaches infinity
the attenuation approaches unity.

With the advent of thin-film circuits the distributed
parameter RC line ceases to be just a limiting case of n

lumped RC circuits. ‘Thin film circuits are replacing. the



lumped components due to the requirements of (1) microminia-
turization and (2) modular construction.‘

A number of materials have been used fcr thin film
resistors,-such as vacuunm depoaited nichrome, sputtered tan-
talum, vacuum deposited metal oxides, etc. Thin-film capa-
citors are fabricated by evaporating a high dielectric material
onto a resistive path and covering it with another layer of
conductive film. The dielectric layer may be formed by oxi-
dizing the resistance layer. These technigues enable us to
realize a wide range of resistance and capacitance values per
uhit length. This can be achieved by controlling the physical
dimensions of the films.

Since distributed networks are used extansively in micro-
cifcuitry and there is a definite possibility of shaping the
distributions so as to optimize the performance of the system
in which they are used, the need for developing a technique
for such synthesis is appafent. So far, in the field of
feedback oscillator circuits, the trend has been to assume
certain form of distributions,.such as exponentials, and
analyze the circuit. N

The present study keeps the form of the distributions
‘completely free except for the upper and lower bounds resulting
from the physical realizability and tries to obtain optimum

distributions of parameters which optimize the specified

kcritcfion, viz. minimum attenuation at 180 degree phase shift.



MATHEMATICAL FORMULATION OF THE OSCILLATOR PROBLEM

The general statemeht of the problem is as follows:

Find the distributions r{(x) and c(x) {[with refefence io
Fig. 3] such that at a given frequency (1) there exists
desired phase shift between the input and output, and (2) the
attenuation -is minimum. The distributed inductance 2(x) is
considered to be a non-controllable éuantity.

ForAlumpea parameter circuits the system equations gov-
erning voltage and current relationships are differential
equations in time with constant coefficients. For a distributed
parameter system they become partial'differential equations
in time and space with coefficients being functions of space,

[referring to Fig. 4].

, % r (%) dx 2(x)dx x+dx
e m one . l'nv \r .y 5 731 P )
| T(x,t)
R nrse aut : ! . ——p-
input v(x,t) T —_ c(x)dx output
e—= - — = - : O = = iy
Fig. 4
_g_;[v(x,t)] +or(x)i(x,t) + 2(x) —g—E‘[i(x,t)] =0 (2.1)
) . ) -
3% LB + clx) 3¢ [vix,8)] =0 (2.2)

ot

The driving function v(0,t) is assumed to be a»co—sinusoidal
input at a frequency w. Linearity and the time invariance of

parameters r, ¢, and % assure the presence of only one fre-



quency 'w'. Thus we can assume a steady state solution of
“the form

v(x,t) = a(x) cos (wt+6)

Vl(x) cos wt +<V2(x) sin wt

i(x,t)

Il(x) cos wt + Iz(x) sin wt

v, (x)

where 6 = tan™! ¥ (x) Specifies the phase angle of the
l .

Volﬁage as a function of x, and oa(x) = (Vlz(x)_+ VZZ(X)YI72
gives the amplitude of the voltage along the line.
Substituting this solution into the equation (2.1) and

(2.2) we obtain time independent state equations

T VL) = xR I (x,0) - 0k I,(x,0) = £
gi Vz(x) = —r(x)Iz(x,w) + wl(x)Il(x,w) = f2
&1 (x) = ~wc(x)V,(x) = £

dx 71 2 3

d_ I.(x) = wc(x)v (x) = f

dx ~2 1 4

At this stage we will maké two assumptions, (1) output
impedance of the amplifier ts;ﬁrce‘impedance at the input of
the line] is zero and (2) input impedaﬁce of the amplifier
[load impedan¢e on the line] is infinite.

Without any loss of generality the input conditions of

the line could be specified as

a , a>20

<

v, (0)

i
o

v, (0)

(2.3)

(2.4)

(2.5)

(2.6)



The open circuit at the output end of the line implies

t

I;(L) = I,(@ = 0. o (2.7)

The two conditions given above get slightly modified for
a non-zero amplifier output impéaance and finite amplifier
input impedance.

a—

The 180 degree phase shift requirement is translated as

V2(L) = 0

: (2.8)
Vl(L) < 0.

Equation (2.8) assures a phase shift of w, 3w, 5w, ...

Since the minimum attenuation is the same as the maximum gain

~

we need to maximize ¢,

(L) ‘ (2.9)

IQ

¢ = (0)

with a(x) as defined in (2.3).

Q

Since V2(0) = V2(L) = 0 and Vl(O) = a, the criterion
becomes

max ¢ = max {Vl(L)l . (2.10)
The general form of the solution will be as shown in
Fig..5.

N, 0




The attenuation increases as the signal travels along the
line.. Thus there is no'poséibility of attenuation at phase
shift of 3w, 57 ... being smaller than that at . We‘dan
safely restrict our considerations to the phas; shift of w,
or the first zero of v, (x) .

The boundary conditions (2.6) and (2.7) require solving
a two point boundary value ptoblem, since the voltaée is
specified at one end and the current at the other end. It is
possible to avoid mixed boundary conditions by specifying the
voltage at x=L. |

If the conditions are specified as Vl(L) = a, V2(L) =0,

from (2.9) it is apparent that, with

Vy(0) = I;(@ = I (L) = 0,
max ¢ = min |V (0)] .
V.x)
X=0 X —2> . “ Z x=t
z=L o z=0
V00
Fig. 5a

Fig.5a gives a general form of the solution. For a>0,

Vl(x=0)<0. This implies that

max ¢ = max V}(O) . (2.11)



Now we can define the problem using control system
- terminology. Define the 4-vector

t _
y - [VllvlelII2] .

The system equations are given by

Sy = A®) y& . (2.12)

The matrix A(u(x)) is defined by (2.5) and u(x) is a two-vector
defined by ut(x) = [r(x),C(x)]. The inductance 2(x) is assumed
to be a non-controllable parameter. The endpoint bdundary

conditions are
t _
y (x=L) = 1[a,0,0,0] (2.13)
with L fixed; and the rigid constraint isléiven by
Qly(x=0)] = yz(O) = 0, (2.14)

Our task is to obtain r and c¢ distributions that maximize

¢, where
¢ = y;(0). (2.15)

We also assume that the limitations in fabrication require
that the values of resistance and capacitance per unit length
be within finite upper and lower bounds. This gives rise to

the inequality constraints on the control variables r and c.

r < r(x) < r

m M

(2.16)

c < c(x) g c

m M



METHODS OF SOLUTION

A. Hamilton—Jacobi Equations via Dyhamic Programming:

This was tried as a possible approach. It is pfesented
here to give some idea about the complexity involved in the
numerical solutions of the two point boundary value problem
one may face in using techniques that lead to a»set of
necessary conditions for optimaiity.

Let us define a new independent variable
z = L - X, (3.1)
The state equation which was the same as (2.12) now becomes

&y = - a@@)y(2) (3.2)

and the end point conditions specified in (2.11) now become

initial conditions
y(z=0) = y, = v¥° (3.3)

With the criterion.functibn as ¢ = ¢(y(z=L)) we have a.
Mayer formulation of the variational problem. Bellman and
Dreyfus7 have used a heuristic‘apprdach that is very revealiqg.
The optimal payoff function aé‘deéighated by J, is an implicit
function of the initial state y° = y(za) and the length of the
process

s = L - zé , (3.4)

The optimal payoff J is defined by

J o= Jy°,s) = o Fle(yml. - - = (3.5)

<
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The optimal vector u*(z) and the optimal state vector y*(é) all
depend on.y° and s. Consider a distance Az along the optimal

trajectory as shown in Fig. 6.

y; (L)

yi(zO+Az) y;(L)

optimal
o trajectory
Y }
z=2Z z . +Az o p=1,
0 0 Fig. 6

The trajectory for nonoptimal u is also shown. Along the
optimum path,

J(y°,s) = J(y*(zo+Az)s~Az) ’ (3.6)
since we will end up at Y*(L) along the optimum path, no matter

where we start from.

If we take an arbitrary u from A to z.,+Az and an optimél

0
u=u* from z0+Az to L then the payoff function will be
J(y(zO+Ast—Az). o
Thus,
J(y®,s) = 0% [3(y(z+hz),s-Az]. (3.7)

| Expanding the right side in a Taylor series and neglecting

second and higher order terms,

o max _aJ 33
J(y°,s) a W(y°.s) ng Az + :ZL 3y, Ayl
: - (3.8)
_omax jo o) L33 4, 4500 4
= oy s 3s 0% * E oy, dz Y (y°,zO)A?];
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since
. _ d .
.ij = iz yjAz . (3.9)

The term on the right side which depends on u is %E yi(zo).

Hence we take éll the other terms outside of the bracket and

divide by Az. Taking the limit as Az>0 we obtain

Q

9aJ _ max [ % J

)
- 4 3010
ds u(zo) jnayj dz yj (y°,z0)] ( )

In (3.6) the maximization was to be carried out over the inter-

val z, to 20+Az. "With Az-+0 the control vector becomes just

u(zy).
The partial differential equation (3.10) is true for any

z along the trajectory and the corresponding duration s. Thus,

9J _ max [ 2 3
9s u(z) 19y

This is a Hamilton-Jacobi eguation.

Y5l(y,z) 1 (3.11)

QalQa
N

For our case y is a 4-vector and u is a 2-vector,
ut = [r(z),c(z)]. We can incorporate the constraint (2.14)
into the criterion function by means of a Lagrange multiplier

p and write a new payoff function,
¢ = yy(z=L) + u y,(z=L). (3.12)

In order to solve (3.7) numerically, we have to discretize
it in z. As a first step we have to obtain solution of u(zo)

and then for u(zO+Az), assuming u(z,) to be constant from zg to

zO+Az, and so on. This becomes a problem of grid’formation8 in

five dimensional space [yl,yz,y3,y4,s]. The undetermined
/

Lagrange multiplier u is an unknown quantity that has to be

_determined by trial and error.
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No attempt was made to obtain the numerical solutions

using this approach.

B. Pontryagin's.Maximum Principle:

The maximum Principle will yield a set of necessary con-
ditions that the optimal control u* has to satisfy if such
control exists, and if it optimi?es the criterion function.

Given the system equations (restatement of (3.2) and (3.3),

y(z) = - a@E)y( , (3.13)
with boundary conditions
y(z=0) = y° = [a,0,0,0], (3.14)

the Maximum Principle states that in order that the trajectory
y(z) be optimal in the sense that the criterion function is
maximized it is necessary that one can find functions X (z),
defined as the adjoint variables, satisfying the following
broperties, .

i) thev)\j satisfy the differential equations,

4 o - ,
Ay + ) [E%T £, (y*(2) ,u*(2)) 14, (2) 0 (3.15)

3 738 Ay

QJ‘QJ
N

ii) letting

E{u) =
i

] e~

. fi(y(Z),u)Ai(z)

where u is arbitrary, nonoptimai 2-vector, then

E(u*(z)) 2 E{(u(z)) for all z and admissible U.
(3.16)
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At this stage we may introduce the Hamiltonian,

; 4 _
H(y,u,A) =} A.f.(y,u) (3.17)
121 J 3
J
" Thus, in terms of the Hamiltonian the Maximum Pfinciple states

that,‘given

y = H (3.18)

919
N

QWQ
N
K

in order that y(z) maximizes the criterion function it is
necessary that

H(y(z),u(z),A(z)) 2 H(y(z),a,1(2)) (3.19)

~

where u is any constant admissible control vector.
Also the adjoint variables have to satisfy the transver-

sality condition at z=L

QL

= %0 _ 08
A (L) =g s we (3.20)

where ¢ is the criterion function, @ is the boundary constraint
and u is the undetermined Lagrange Multiplier.

Coming back to our system of equations,

na|m'
N

y = - Ay
d _ ot
az A= A7)
H = - AtAy (3.21)
£ _ .
y (0) = [afololo:’
t _
A (L) = [ll"UlQlO]-
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With the inequality constraint (2.16) on the éontrol, (3.19)

gets transformed into

oH : . * -
Bu*i > 0 if u*, =

oH

au¥,
i

JH

u*,
9 i

and the constraining equation
Qly(m)l = 0 (3.23)

Equations (3.21) to (3.23) comprise a self-sufficient set
of equations, which, when solved will yield the optimal con-
trol u*(z). This is a two point boundary value problem.

Since A(u(z)) is linear in u, H turns out to be linear
in u. |
. .H

r (A,y3 * A2Y4) ’

(3.24)

Ho = oy, = Ayy) .

Thus (3.19) suggests a bahg bang control. In other words,
we are tempted to believe that u;, will always be at either
boundary and will switch whenever Hui changes sign.

,Aésuming such a bang bang form of the control, a combi-
nation of iterations and scanning (for ) was used to find a
sclution. The iterations did not converge. ' The solufions
obtained by gradient technique which is described late£,

" indicate that the assumption regarding the form of the control

was erroneous. It does not turn out to be a bang bang control.

»
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(One way of circumventing the problem of linearity is by
adding to the criterion functibnva penalizing funcﬁional7.that
is nonlinear in control). |

As Jéhnson and Gibson4 have pointed out, it is character-
istic of the solutions to linear optimization problems that
_the switching function Hui sometimes becomes identically zero
over some finite interval of 'z'. Since, during this interval,
H does not depend upon u explicitly, the usual procedure of
selecting u* so as to maximize H breaks down. These linear
optimization problems where Hui becomes identically zero over
finite interval have been referred to as "singular". It has
been4shown that the optimal control may actually consist of
intervals of variable control effort (called "singular switching
curves") combined with intervals of limiting control.

Thus, there seems to be a distihct possibility of the

optimal control being a limiting control with singular curves

rather than a bang bang control with switching points.

C. ' Gradient Techniques:'

The approaches described so far are based on obtaining a
set of necessary'conditions for the optimality and then trying
to get solutions to this set of equations. The necessary
condition may be a partial differential equation as in the case
of the Hamilton—Jacobi equation or a set of differential
equations with mixed-boundary conditions as for the Maximum

/Principie. The approximate solutions to these equations may

not lie in the neighborhood of the desired solution and thus
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may not yiéld any useful information.
| The alternate approach is to seek stepwise gradual improve-
_ ment in the critgtion function. . The method is known as "Gradient
Technique”, "Hill Climbing Technique", or "relaxation method".
- Here one assumes an arbitrary non-optimal solution and seeks
a stepwise improvement in the direction of the optimum. Thus,
the new solution generated at every step of the iteration is
an improvement over the previous one and the process hopefuily
converges. |
Specifically, we seek to obtain a functional relationship
between variations in the criterion function and variations
in the control vector u. This defines the desired variation
in u in order to achieve improvement‘in ¢ and yields a self-

sufficient iteration procedure.

Referring to the set of equations (2.5) we have

ax ¥y = filveme

Consider a small perturbation in the control variable u.

With new control as u+du and resulting trajectories as y+d8y

>

the resulting first order variational equations are given by,

d _ of. of.
ax (6yi) = 3 3;% Syj + X gﬁl Guk ’ (3.22)
J j k

Q-le:
»

(y) = ASy + Auyéu ; (3.23)

,/Au denotes the partial differentiation of the 'A' matrix with

reference to the subscripted variable.
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Define a set of adjoint variables by the differential

d- J\ ) X - Z 8"—_; }\ : AKX L 4 3 3 2 4

The system equations are linear in y. Under such circum-
stances the adjoint equations‘will always be reduced to a
form .
A = - afuE)am. (3.25)
Before illustrating the function of the adjoint variables, we

can discuss their form.

From (2.12) and (3.25) one can derive the relationship
) - o — © e e P PR K ;
d .t _o |
ax Ay =0 (3.26)

i.e. the inner product of A and y remains constant for all x.
This implies,

Aty = A rwym (3.27)

In terms of fundamental matrices $(x) and ¥(x), where

y(x) B(x)y(0) (3.28)

A (x) ¥ (x) A (0) (3.29)

the relationship (3.27) yields
¥V(x) = 271(x) (3.30)

Hence, if the solutions to (2.5) are known in terms of the
fundamental matrix &, the solutions for the adjoint equations

, can be obtained as

AMx) = 7 (x)A(0)
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without solving (3.25).
Also for certain forms of matrix A there exists a simple
linear transformation of the type

Y(x) = BA(x) (3.31)

where B is a nonsingular constant matrix, such that with this

transformation the adjoint equations

d I
Cr
become
d
ax Y T T

With the change of variable as

z = L -x (3.32)

the equations reduce to

& v(z) = A(z)y(2) (3.33)

This equation has a form identical to (2.12). Thus the trans-
formed adjoint variables y(z) are solutions of the system
equations with thgvreversal of.the space variable. The 'A' \
matrix, as defined by (2.5)Aa5d (2.12), possesses the above
properties. We will consider the corrésponding B matrix and
~the significance of the pfoperty mentioned above later, when
we will get to the stage Ofvobtaining the numerical solutions
to the system and the adjoint equations.‘ ﬁ
Multiplying (3.22) by Xi’ (3.24) by éyi, ad?ing them

, P,

’ together. and performing summation over i, we get
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d_ [ZA.8y.] = I I A, == du | (3.34)
ax j 11 ik 1 Guk k
Define
H = <)\, £> = I A £,
o R R 1
i
Then, integrating (3.34) from x=0 to x=L,
sy.1¥ = & H sud

0 o)

Since y(L) is completely séecified by (2.13),

Sy() = 0 .

2

Here we can define.x¢ and A" as the adjoint system variables

satisfying (3.25) subject to boundary conditions,

~

) - _ 99
and
Y’ o af
2@ = g T (3.37)
respectively.

When ¢ is given by (2.15), equgtion (3.36) becomes
%) = [-1,0,0,01% .
Simiiarly, when Q is given by (2.14), eguation (3.37) becomes
A o) = fo,-1,0,01% .

Now we can define

¢

<A¢,f>

gt = % e

Substituting (3.36) into (3.35), we obtain

§¢ = JU Hﬁ sudx . " (3.38)
(o] .
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— - - - e e b e et o bt e

Similarly, substituting (3.37) into (3.35), we obtain
| | s@ = & u%suax . | L. B3
i B 0 u o . s

St g ot e e e e e e e e e e bt

Equations (3.38) and 23;39) give the functional relatidﬁéhip
V between variation in control, and change in criterion function_
and constraint in response to it.

The initial arbitrary nonoptimal choice of u or the sub-
sequent estimates of u during iteration process may not exactly
sati§fy‘the constraint Q=0. Therefore, at eVery stége there
are two variations required.

(i) Change d¢ in order to improve the criterion function.

(ii) Change df=-f in order to satisfy the constraining

equation.

Noting that Su is a function of *x! one\realizes that
(3.37) and (3.38) can have infinity of solutions. Hence we
stipulate an arbitrary criterion function 1/2 éL sutwsudx
which has to be minimized while satisfying (3.38) and (3.39).
This (i) eliminates the singular probiem since the criterion
is quadratic in control, and (ii) keeps the variation Su to
a minimum (in Euclidian norm sénse). This is desirable since
the derivations are based oﬁ ; small perturbation.

We have to find Sdu that minimizes the composite criterion

function

L._Q

v = 172 /® sutwoudax + vP1a¢-/Tu®suax] + v iae-sTafsuax]
‘ o o 4 o 4

(3.40)

where v¢ and VQ are undetermined Lagrange multipliers, to be

/ 4 . .
chosen so as to satisfy (3.38) and (3.39).
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Euler Lagrange equations give

su = wipdudt 4 gl (3.41)
_ : u u .
Defining
b = Wl sedter
su® = wilt (3.41b)
with
HE = |- (A.y. + A.y,)
u 173 2¥4
w(Ayy; = A3v,)
su = vPu? + visud (3.42)
Substituting for éﬁ in (3.38) and (3.39) we get
ap = & s H$6u¢dx + V¢ Hgauﬂdx (3.43)
aog = s Hﬁau¢dx + Vg Hﬁdugdx (3.44)

The'iterafion algorithm is fairly straightforward and
proceeds as follows.

1) Assume a noﬁiﬁal control u. Solve system equations
(2.12) with boundary conditions (2.13).

2) Solve the adjoint éqﬁétions (3.25): (i) with boundary
condition (3.36) to obtain A¢(x) and (ii) with boundary con-
dition (3.37) to obtain A%(x).

3) Evaluate 6u® and su® from (3.41a) and (3.41b), with W™! given.

4) Solve (3.43) and (3.44) for v® ana vL.*7

5) Evaluate Su from (3.42).

6) Add Su to u & Obtain revised estimate for control as’

*
W-! is chosen based on knowledge of the system, & could be made
equal to the unity matrix. N

-

d¢ & df must be chosen beforehand. d¢ is chosen for COﬂvergence & an
to satisfy the constralnt equatlon (2.14).
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u + 8u. The inequality constraints on u are taken into account
by truncaﬁing (u+du) at uﬁ or u. wherever it crosses the
béunds. The validity of tfuncation in connection with conver-
. gence can be proven for ¢ or { correction separately. (Refer'
Appendix B) Now branch back to the start of the loop for the
next iteration cycle.

The variation u(x) has two components 6u¢(x) andVGuQ(x)
and their proportion in forming Su is decided by two.scalar
coefficients v¢ and vQ. But suppose we have only one criterion
function ¢ and no constraint. Then (3.43) will be transformed
into

Su = v¢6u¢

¢ can be obtained from (3.43) by setting SuQ = 0.

and v

Theré:ate'twoiaspedtswof the form of Su which.we ‘can control:
1. The shape of the variation in u(x); 6udJ and Sun.
"2. The amount of variation or the step size which

is constant for - -all x; v¢ and vQ.

Equation (3.41) gives the shape of Su(x) as
sub(x) = wimft

. u

and v¢ is the step size.

Thus instead of viewing W(x) as a weighting factbr for

an arbitrary‘criterion function we can.choose W l(x) as a

shaping factor and obtain the_correspoﬁding step size directly

from (3.38).

Let us consider an analogy from the field of calculus.

Let the criterion function ¢ which has to be minimized be
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a function of two independent variables X and X,

b= olxg.x,) . (3.45)
Hence the first order variational equation is

d¢ = ¢x16xl + ¢x26x2 p (3f46)

where ¢x and ¢x are partial differentials of ¢ with respect
1 2

to X, and X, respectively.

For a given d¢ we can find non-unique values of 8x, and

1
6x2. An additional constraint that removeé the non-uniqueness
is obtained when wé seek a variation [6xl,6x2] that (i) mini-
mizes
172 ||sx]]2 = 172 (6x;% + 6x,2), (3.47)

‘and (ii) satisfies (3.46). \

The composite criterion function for this accessory mini-
mization problem can be written down.(Refer (3.40)).

y = 1/2 (6x12~+ §x,2) + v[d¢ - (¢x16xl+¢x26x2)1

The conditions for stationarity of ¢ yield

le ¢xl
= v |- (3.48)
ze ¢X

Substituting this back into (3.46)

Vo= de/ (92 +¢2 )
, S
In equation (3.48) the gradient ¢x gives the direction in
: 1
¢
*2

(xl,xz) space and v is the step size.
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Referring back to the problem of thé calculus of variations,
if we let W' = identity matrix, su® in equation (3.41) is
the 'gradient' of ¢ at any x. We can call this function a 'shape'
of thé‘variation that specifies the 'direction' in y space
at all_'x’.‘ The constant v¢ in (3.42) is comparable to the
step size v in the above example.

Thus, the separation of the variation in control as a
'shape factorf 6u¢ and a step size v¢ is comparable to the

‘gradient' and a step size.
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ALGORITHMS AND PROGRAMS

The iterafive soiutions are obtéined on the‘Hybrid Com-~
putér Unit using the improved Gradient Technique. Appendix A
describes the features and certain operafions of the Hybrid
Unit. The analog computer is used exclusively for solVing
the differential equations. The digital computer supplies the
continuously varying coefficients. The synchronous operation
of the analog and digital computer units yields the solutions
to the differential equations. The solutions to the various
system equations are stored into the memory of the DC and are
subsequently operated upon to obtain the desired variation in
the control variables. The entire operationxis under,complete
program control of the DC.

Analog Patching:

We need to solve three sets of system equations on the

analog computer.

The system proper is described by (from (3.1))

%5 yi(z) = r(z)yz(z) + wl(z)y,(2),
d
3z yz(Z) = r(z)y,(z) - wi(z)ys(z),
(4.1)
‘ g—z- y3(z) = c(z2)uy,(z) '
d -
Iz ya(2) = - c(z)wyy(z)

yt(z=0) = [a,0,0,0] (4.2)
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As shown in Fig. 6, 'x' is a forward and 'z' is a baékward
diréétion of integration. The independent variable for an
" analog computer is time 't'. The AC always integrates forward
in time 't'. By setting t=z the equations (4.1l) are integrated
backwards in space.
| The two adjoint systems have identical differential
equations (from (3.23)),"

d

&= M = - c(x)wk4(x)’
4 (x) = c(x)wrs(x)
dx 2 3 !
(4.3)
S = i) - we (x) A, (x),
S = rA,(x) e (),

With the boundary conditions specified by A(x=0) = K¢(O) = Di,0,0,0]t

the solutions of (4.3) give A¢(x) and with (4.4)

AMx=0) = %) = [0,2,0,01F ' (4.5)

the solutions of (4.3) give AQ(X).

Equations (4.1) and (4.3) have the same form. With the‘

transformation
p; = yi(z) = A (),
Py, = ¥,(z) = Aj(x),
' | (4.6)
S
Py = Ygl2) = A(x) .
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and with the proper choice of space varying coefficients r(x),
c(x), and £{(x) and the initial conditions, the same set of’
equations yieldssoluﬁions for either y(z),_l¢(x) or.AQ(x).

The 'B' matrix referred to in (3.31) turns out to be

Hooo
omoO
coro
O OO M

»

The analog computer patching is given in Figure 7.

A. Algorithm for Improve First Order Gradient Technique:

The flow chart in Fig. 8 describes the hybrid program
for the first order estimation of the correction by the improved
gradient technique. A more elaborate description is’ given
below. )

Block 1: Preparatory Steps -- The input/output channels
of the DC are reset; the lengtﬁ of integration is specified}
the quantum of the x or z interval which results from discre-
tization of the space is calculated. (The functions r(x) and
c(x) are approximated by the staircase approximation.) The
upper and lower limits on the éontrol variables are specified
and the arbitrary initial pfo%ile of the control variables
is assumed and loaded into the memory.‘

.Block 2: Solving the System Equations on ﬁybrid Unit =--
The DC sets the initial conditions for the integrators of the
AC as given by (4.2). Tﬁe initial values for the integrators
can be obtained either by (a) using the DC to set a pot or

/ Sl

" (b) using DAC output lines. The initial values of the functions

r(z) and c(z) are set up on the DAC. Thewstatic“%est may be
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/ ¢
1 2. Solve system equations
. Q=20 Yes
Store Check d¢ and Q. dé too ‘E;IE—
Y Set new d¢ and dQ. |small?
’ No

Store 3. Solve adjoint equations
A%, 28 gor 2% ana A%,

N

4, Evéluate.first

estimate of Sud and &uf?,
v¢ and v@. Hence Su.

" Check u+du for bounds.

Al

5. Obtain second estimate
: bf,6h¢, su and v9, vQ,

»

Y

6. New Su and u+du
Check for bounds.

FIGURE 8
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carried out at this time to check t@e initial conditions.
| The integration routine then foilows. .The_AC solves the
system»differential equations. The equations specified by
(5.1) are integrated backwards in space. During integration
the AC receives from the DC the values of the.variable co-
efficients on the DAC and transmits back the values of the
system variables on the ADC.

The solutions obtained by integration are conzerted to
digital form and are stored in the memory of the DC. The

values of the criterion function and the residue for the

constraining equation are evaluated as,

b = yl(Z=L)

2

i

y2(z=L).

The variation in the criterion function, d¢, is chosen so as
to drive yl(k=0) towards the value of yl(L) such that the
attenuation approaches unity and df is chosen so thatQ con-'

straint is rigorously satisfied by the next set of distributions,

i.e.
ae = - Q S {oxr @ + 40 = 0)
Block 3: Solving the Adjoint Equétions on the Hybrid
Unit -- The operations are identical to the previous block

except that (a) the initial conditions are specified by (4.4)
and (4.5) for A¢ and'}\Q fespectively, and (b) the adjoint

equations (4.3) are integrated forward in space so that x=t.

Hence the control distributions are r(x) and c(x). The same

analog program that is used for the system equations is used
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fof»the adjoint systems with the pransformation of variables
as given by (4.6). |
‘Block 4: The First Estimate of su -- The equations (3.41),
(3.43), (3.44) and (3.42) yield the estimate of du. (W is
assumed to be an identity matrix.) Adding du to u one gets an
estimate of the new control as u+déu. However, if u lies close
to or is equal to the limitingivalues the new control u+du
may exceed the limits. Under these circumstances u+du is
confined to the limiting values wherever it exceeds the limits
on the control variables. This amounts to the truncation of
du so that u+du lies within the specified limits (see Fig. 10).
The estimated new control is monitored at this‘point to
check if it exceeds the’bounds and truncated if necessary.
In the case of the unimproved gradient technique, the program
branches back from here to block 2 and starts the new iteration
loop.
It is observed that after the control variables reach
the limiting values and start getting truncated, the subsequent
iterations improve ¢ but cause Q to diverge instead of converging
to zero. It does not pay (in terms 6f cénvergénce) to let Q
diverge too much. It becomes necessary to set a limit fqr
|@| and monitor it at every iteration.
Whepevér Q diverges and exceeds the limit, only @
correction is applied during the iteration by assumingf6u¢=0
/in equation (3.42). Thus
vQ uﬂ

fu = §
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during such iterations. This procedure drives § close to zero
without any regard to the value of ¢. When || is driven
sufficiently below the limiting value the imposed restriction
'6u¢=0' can be removed and one can seek both ¢ and @ corrections

simultaneously.

'So far we have not said anything about what values the
elements of weighting matrix W.should have. The matrix W has
to be pbsitive so as to satisfy the strengthened Legendre
necessary condition for the accessory problem. Normally W
is chosen to be an identity matrix. In such a case H, solely
determines the shape of §u. Hu is also the 'sensitivity
function' or the 'influence function' for the improvement (see
equation (3.38) and (3.39)). If we define uopt(x) as the
optimal distribution of scalar u(x), the variation needed to

reach the optimal distribution from u(x) will be (u u) .

opt
For various vaiues of x the values of Hu(x)/(uopt(x)~u(x))
may turn out to be very different. The control u(x) may be
already close to the optimal profile in the most sensitive
regions and farther away in the least sensitive regions. The

matrix W(x) can be used in such cases as a compensating factor.

The matrix

wt o= | (4.7)

has been found to be helpful in the present case. The choice

of W was governed b&rthe sensitivity.
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However, once du starts'getting truncated at the boun-
daries, we face a different type of convergence problem. In
order to get a better understanding we will first consider a
simpler analogy. |

Let ¢ = ¢(xl,x2) be the cost function of scalars xq and Xge

ko > k' > kz

im " Fig. 9

-

Fig. 9 shows the contours of the level lines for constant

¢ in space (xl,xz). The variables Xq and x., are bounded. We

2
have to seek a minimum of ¢. Let x° = (xi,xg) be an arbitrary
starting pdint. In the gradient technique one seeks to move in
the direétibn éf the negative gradient -V¢ which is normal to
the level line ¢=k°® at x°. The step size is estimated from

the desired improvement d¢. If x° is close to the boundary of
Xy or X, the step in the negative‘gradient direction may go
past the boundary as shown in Fig. 9. One has to 'truncate'
the step at x' which is a point on the boundary. It is
apparent that from this point on, the step in the direction of
the negative gradient will be truncated in the x, direction;

The truncated step will yield much less improvement than the

/stipulated d¢. This seriously affects the convergence.
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It is obvious from the figure that the best direction to

follow is

Las
Bxl

0

i.e. to keep moving along the boundary Xy = Xon
Block 5: Revised estimate of Su -- Let us consider the
situation shown in Fig. 10 where u is a Scaiar function. A
part of u lies on the boundary U and a part lies on Uy e The
Variationsv6u¢ and c‘SuS2 are the components obtained as described
in Block 4. The variation du is the first estimate. However
after truncation it reduces to Su'. It is apparent that a
large section of Su -- shown hatched -- was counted upon to
make substantial contribution towards the variations d¢ and
dQ, but is now ineffective. The éomposition of du' in termé
of 6u¢ and SuQ cannot be estimated. Since 6ﬁ¢uaffects aqQ,
and 6uQ affects d¢, the corrections d¢ and d resulting from
du' are not only small but are at times far differeﬁt from
the stipulated values.
This can be remedied, to‘é large extent, by giving aue
consideration to the effect of truncation in the revised

estimate of Su. This is effected by using [du'| or (8u')? as

a weighting factor. Thus we have

sut = (su')2su?
g (4.8)

2y (6u')26uQ

Su

‘Wherever the first estimate 6&u gets trunéated, du' is
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Su™

_fgu

FIGURE 10
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equal to zero (see Fig. 10). The new estimates 6u¢"and 6u9'

» will also be zero wherever the first estimate Su is truncated.

Thus, the second estimate of the step sizes v¢ and VQ is

obtained by reshaping 6u¢ and 6uQ so that the second estimate
of the variation édu is coﬂfined, as far as possiblé, to the
-region where the ﬁossibility of the variation exists.

Revised values of v¢ and vQ may be obtained from (3.43)
and (3.44) and the new estimate of Su is given by

fu = v¢5u¢' + vnéug'

"Effectively we use a W factor, so that

(rM—rm)

(6;:')[ T,

g + rm] 0

Wl o= (4.9)
(c,,~c_)
0 (8c) [oy- ——M-I—‘—I-“-— ]

b oL

where 6r' and §c' are truncated first estimates from Block 4.
The last part of this operation is checking and truncating
u+du. Then the program goes back to Block 2 for the next

iteration cycle.
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COMPUTER SOLUTIONS

The use of ﬁhe Hybrid Computer waé considered to be best
suited for this problem due to the following reasons: |

(ij The Analdg computer can solve the differential
eqguations without discretization in 'x' space.

(ii) The Digital computer with the help of D to A converter
can generate arbitrary shapes of distributions and feed them
to the Analog cdmputer to obtain the representation of a nom-
uniform transmission line.

(iii) The storage facility and the computational capa-
bility of the Digital computer can be utilized to evaluate the
estimates of &u. | -

Appendix A.describes the Hybrid Computer operations. As
a particular case of the oscillator problem we chose the
following set of values for the numerical analysis.

The ratio of rM/rm and cM/cm is chosen to be 10. The

limiting values are chosen to be

Iy, = wg, = .8

~

~

'rm = mcm = .08

This choice is governed by the limitations of the dynamic range
of the System. The ADC, DAC, and analog units cannot handle
quantities larger than unity (10 volts), and for the values of
the order of .OOlO there is a serious noise problem. However,
,a large spectrum of values can be handled by transforming the

independent variable (thus effectively changing the scale)
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provided the dynamic range is not tpb large.

The quantum of the iﬁter?al is chosen to be 1/10 unit.
Thus we have 189 discrete intervals for lengtﬁ of 18.9 units.
The functions r(x) and wc(x) are represented by sfepwiée approxi-
mation. At the start of each interval the value of r(x) or
mc(x) at that’point is_provided on DAC and held constant until
the start of the next interval. -The system variables are
sampledxén the ADC at the end of each interval. The sampled
values are fed to the DC through ADC while the integration
continues uninterrupted.

The first order unimproved gradient technique with W
chosen as an identity matrix was tried first. Different dis-
tributions such as uniform distribution, ramp distribution,
or exponential distribution were used as an initial guess.

The problem of sensitivity was'immediately felt since they did
not convergé té a single distribution.

The unimproved first order technique with W as an identity
matrix indicated that with different initial guesses the
iterations ﬁoved the distributions in the same general direction
but the sensitivity problems prevented them from converging
to a single distribution. Also, the simultaneous convergence of
¢ and Q was affected when the 6u estimates were truncated.

(see Appendix B) The algorithm described in Chapter 4 for the
improved ‘first order technique is an attempt to correct these
defects. The method seems to work satisfactorily.

The unimproved first order technique with W as an identity
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matrix is used until the improvement in ¢-becomes small.
Then-we branch to the method using (4;9) as weighting factor,
which is the improved gradient technique.

The optimal distributions obtained from the computer are
guite noisy. (The reasons are.described in the next chapter.)
Fig. 1l is the noisy output from the computer. Fig. 12 gives
the filtered version. The rest of the figures presented here
are the filtered versions of the computef output.

In order to check the dependence of the final distributions
on the initial guess, two widely different sets of distributions
are selected as an initial guess. In each case the lenhgth of
the line is 14.

Case 1: The initial distributions are

r(x) = wc(x) = 0.325
The final distributions are given in Fig. 12.
Case 2: The initial distributions are

(0.8—0.08
L

0.8-0.08
L

rix) = 0.8 - 1%

we(x) = 0.08 + ( )X

~

The final distributions are giﬁen in Fig. 13

The comparison of the results recorded in Fig. 12 and
Fig. 13 shows that in both cases the distributions convefged
to the same set of final distributions. This indicates that
the algorithm derived here is quite insensitive to the choice
of the initial distributions.

On the optimal switching curve in between the bogndaries)

H should be identically zero. The observed values of H, at
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the start of the iteration and at the end differed by a factor
of. about 1000 indicating that we are very close to the optimum.

Fig. 14 through 18 give the results for aifferent assumed
length 'L'. In each case the starting distributions are taken
to be uniform and inductaﬁce 2({x)=0. Table I summarizes
these results.

For the second set of results we assumed different values
for inductance 2(x). As stated before 2(x) wés assumed to be
non-controllable and constant.

Figures 19 through 21 present the optimal r(x) and c(x)

for different 2(x). Table II summarizes these results.



44

PT FYNOIA

+
(Y

. | 0=(x)% ‘ 9=T
uoTINqTIISTA TeUuTd ‘ (X)oM- Yy UoTINTIAISTA Teutd ‘ (X)x - q
uoTINTIISTA TeTITUI / (X)oM- D ﬁoﬂusnﬁuumﬂm TeraTur ‘(x)=x - e

1S5 X o 1S X Jo




45

uoT3INgITI3STd HMQH& ’ (x) oM~

woTIngTaA3sTA TeTITUL /(X)0oM-

\

1 s ~—— x |0

0.

\“
ST d49NdId
A

0=(x)¥ ‘ L=T *
SUOTINATIISTA TeuTd ‘ (X)I - ¢

EOﬂusnwupwﬂm TeT3TUI ‘(X)I1 - ® -

- u.d S c..mll, X | O

€9+




.46

9T FWNOTL

0=(xX)¥ ‘ 6'6=T

uoTINATIAISTA Teutrd ‘(x)om- Yy UOTINTIFSTA TRUTd «Axvu - q
UOTINQTIISTA TRTITUI ‘(X)oM- P UoTINQTAISTA TRTITUIL r(x)x - ®
1 Y -t X o, 1 S %X |0
g80. ) Q0.
L ¢ T
/
4 oy
v v .
e I
9 9




47

LT HINOIJL

0=(x)y ‘ 6°81=1
uoT3INATIAFSTA TeUTd ’ (X)x - g

UoTINGTIISTA TeuTd ’ (X)om - 4
UOTINATIFSTA TeTITUL ‘ (X)a =~ e

UOTINGTIAFISTA TeTITUI /(X)dMm - p
* e X . . . : e gx ‘
u S\ ol S 0 1 . =] ot S : 0




48

8T HYNODIJ
0=(x)y ' 00€=T
UoTINTAISTA Teutd ‘ (x)om- Y

uOTINQTIISTA TRUTI ‘ (X)I - q

S UoTINGTIAISTA TeIITUI ‘(X)ompue (X)x - e .

0T S ol S o

0.,




49

10
4

g

o)
C e

&

58
]

]

Ey]

_;_) .
P

=

2,
£é
4

o
©

4 . .
5 7 10 15 20 30 &0 50
Length L ~»

Optimum attenuation as a function’of the total
length of a line. -

- FIGURE 18a



50

61T HINDIA

Z20°0=(X)¥ ¢ ¥yI1=1

uoTAINGTAISTA TeuTd ‘(X)om - 4 UOTINGTIFISTA TRUTI ‘ (X)X - q

uoTINQTIISTA TRTITUI ‘(X)oM - p UOTINATIFISTA, .n.w._qp..EH r{x)yx -~ e

s - o s * o s 1 - ol s T o
go-




51

. St

0z mIN9IL

uoTINATIAISTA Teutd  (x)om - y

UOTINGTIISTA TeTITUI ‘ (X)OMm - P

1

o\

~

¢ .

B

X

"§0°0=(x)y ‘ ¥I=T |
UOTINATAISTA TRUTA ‘ (X)I - q
UoTINYTIISTI TeTIITUI ‘(X)X - ®
g X

0 st N o) S 0
Q0.
A L T
342 StE.
L 4 VT
9, Lo,
1g. + Qe




- 52

Si

UOTINQTIAFISTA Teutd ‘ (x)om

WOTINQTIFSTA TRTITUI ‘ (X)om

L

X

s

Y
P

TZ F¥NOIL
T°0=(X)y " y1=T1
UOTINGTIFISTA TRUTI ‘(X)X -
UOTANTIAISTA TeTITUL ‘(X)X - B

RN

51

IlT.lx

ol : S ow

S0.

Ste.




53

ERRORS AND LIMITATIONS

A. Scale and Range

The analog computer is a 10 volt machine. The DAC is a
10 volt unit with 14 bits plus.aAsign bit and the ADC is a 10
volt unit with 13 bits plus a sign bit. Thus the lowest
- voltage level that the setup canvhandlé is about 2 mv, as
decided upon by the ADC. Any voltage level below 2 mv is
interpreted as a zero by the ADC and the voltage levels above
10 volts are either rejected by the converters or cause
saturation of the amplifiers. Thus the dynamic range of the
setup is 5x10°%,

B. Noise

(i) Random Noise -- The individual component of the

system has a specified noise level as given below.

ADC - the:noise lével is *1 bit, equivalent to about +2 mv.

DAC - the noise level is negligible as compared to that
of the ADC and AC. |

Analog Computer - the nonlinear multipliers have the

highest noise level. It is specified to be #3 mv. However,
when the transmission line equations were integrated a number
of times using the entire Hybrid setup, for the same distri-
butions r(x), c(x) and 2(x) the end point values of the voltage
Vl(x)iwere found to be repeatable within 20 mv.

(ii) Quantization Noise -- The ADC while reading the
/ results from the Analoé Computer quantizes them. The random

noise is superposed on top of this quantized signal. In the



54

algorithms these readings are operated upon and amplified --
especiélly during the last part of the iteration -- several
tiﬁes. Thus 2 mv quantization step and about 6 mv noise can
cause a noise level in the range of a hundred mv. Figures 12
through 21 are the smoothed out versions of the computer output.
Fig. 11 is one of the original computer output.
| The noise problem becomes mére serious with the complicated

algorithmé involving large numbers of algebraic operations.
For this reason, the algorithm should be as simple as possible.

C. Limitations of the Method

H, is a smoothly varying function. Thus every variation
in the control has a continuous first derivative in the open
region. If the optimal distribution has a discontinuous first
derivati&e and the initial estimate does not, the solution will
‘not converge on to the op?imal. Also if the initial guess has
a diséontinﬁoué first derivative we can never get rid of this
discontinuity in the open region. In the present case the
uniform, ramp, exponential distributions all converged to the
same distribution. However, When the initial guess was a bang
bang type of distribution, the . final distribution retained

the kinks.
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CONCLUSIONS

1. With the béunds on resistance and capaéitaﬁce decided
upon by the fabrication limitations, and the length prespeéified,
the optimum 180° phase shift network with minimum attenuation
turns out to have distributions of r and c that have limiting
values with the singular switching curves.

The attenuatiqn of unity, as projected by Johnson and cal-
culated from Edson's results is not realizable due to the
physical limitations.

The optimum attenuation is not far better than what can
be achieved by exponential distributions given a free choice
of length.

2, | It is possible to obtain a solution to a 'singular'
‘optimization problem by using the Improved Gradient Technique

developed here.
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APPENDIX A

HybridAComputer

This is a combination of the Analog and Digital computers.
We have EAI680 analog computer and IBM7700 digital computer
with input—output subchannels for the transfer of the infor-
mation. In order to transform this setup into a hybrid unit,
we designed and built the intérface. Fig. A.1l shows -the flow
diagram for the hybrid unit.

(i) Digital computer: The DC contains the multiplexor
channel, channel B. It permits the attachment of different
data acquisition and data distribution devices to the processor
of the DC. The input subchannels of channel B are capable of
recording the logic levels ——- true or false -- of the incoming
lines and the output sﬁbchannels can send the desired logic"
levels on the output lines. The operation of channel B is
controlled by the central processor unit.

(ii) Interface: The interface provides the medium of
communication between the AC and DC. It is essentialiy a
translator unit. The function of the various sections of th;

interface are described below.

.Operation Control of the AC: The operation of the AC is

controlled by the coded logic signals sent from the DC. The
interface converts the input logic levels into the appropriate
output logic levels and also generates the clock pulses required

/ . .
for certain operations.
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The operations controliéd are as follows:

1) Operate (Integrate), Hold, Initial condition, etc.

‘2) Analog component selection for readout or potset;
e.g., Amplifier, Trunk, Po£, etc.

3) Time constant selection, e.g. Seconds, Milliseconds, etc.

4) Digital mode selection, e.g. Set, Clear (Registers,
Counter) , etc. |

5) Digital clock rate selection

6) Selecting the address of the analog component

7) Setting a pot coefficient

AC Monitor: The coded logic signals coming from the

monitor of the AC are transmitted to DC. The DC compares the
control order with the monitor signal to find out whether the
execution is proper.

Logic Signals: Certain decisions made by the DC regarding

the status of the program under execution are transmitted
through interface to the logic trunks. These signals can be
used to effect a change in the AC program.

Sense and Interrupt: The status of the AC program such

as a comparator output is conveyed to the interface on the sense
lines. The interface in turn transmits the message to the DC.
The interrupt lines are used for conveying the undesirable
stétus of operation such as overload. The AC is-prcgrammed to

interrupt the operation under such conditions.

Digital to Analog Converter: This is an eight channel

serial input, parallel output unit. The control signal from
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the AC initiates the conversion of the digital data on the
input lines from the DC into the analog signal. The analog
signal appears on the channel selected by the.control word
from the DC. The output channels are connected to the DAC
trunks on the AC.

Analog to Digital Converter: This is a 24 channel parallel

input serial output unit. It receives the analog input from
the ADC trunks. The control word from the DC selects the
channel and initiates the conversion. The digital output is
transmitted to the DC.

(iii) Analog Computer: The AC can be divided into
three sections.

~

Analog Section: It consists of the analog components

such as integrators, summing amplifiers, track -& store amp-
lifiers, etc. ADC trunks receive the inputérfrom this section

and DAC trunks supply the analog signals to this section.

Logic Section: This section contains the logic elements -
such as gates, counters, registers along with the clock out-
puts and control inputs for ceftaip analog components. The
sense and interrupt trunks re;éive the inputs from this section.

The logic trunks appear in this section.

.Operation Control: This section controls the operation

of both the analog and logic sections. It controls all of the
operations listed under "Operation Control of the AC" in the
description of the interface. It receives the coded control

/
word, either from pushbuttons or from the interface. It also
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generates the monitor signals.

~fHYbrid Operations

The two important links in the hybrid setup are the DAC
and the ADC. ‘

DAC: The output subchannel of the DC transmits the
digitized value of tﬁe variable. The load command from the
DC loads the word into the registers-of the DAC. However,
unless the DAC channel receives the enabie command the analog
output does not appear at the output terminal of the DAC. The
previous value is retained at the output until a new enable
command 1s received.

- ADC: The DC selects the ADC channel by\contrglling the
multiplexor switches. -The conversion of the analog signal on
this preselected channel is iﬁitiated by the start pulse. On
completion of the conversion a pulse is sentzko the -input sub-
channel of ﬁhetDC. On receiving this pulse the input subchannel
registers the digital output of the ADC. This is subsequently
transferred to the memory of the DC.

Setting up initial conditions and static test:

The operation control subroutine sets the AC in the "set
pot" mode. The proper address word selects the desired servo
' controlled pot. The value register is loaded and the servo
start pulse transmitted from the DC. The monitor subroutine
checks if the proper pot has been selected and the operation
completed. ~Thus the initial condition -IC- is established with

/
the help of servoset pots.
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Tﬁe AC is then driven into the IC mode and outputs of
amplifiers are read on the ADC. This gives the static test.
Integration routine: A subchannel of the DC is used for
starting and terminating the integration operation. Selection
of the counter SC turns trunk "00" (Fig. A.2) on and the AC
goes intQ_"operate" mode thﬁs starting integration. At the
same time, the AC counter starts counting AC clock pulses and
gives the output as in Fig. A.2. The monostable multivibrator
(FPig. A.3) genefates a pulse every 1000 usec. which generates
a DC interrupt. The DC counts the number of such interrupts.
As soon as the DC counts a specified number of pulses it
deselects the subchanﬁel terminating the integration operation
and driving the AC into the IC mode. The puise from the mono-
stable multivibrator also starts the conversion and enables
the DAC channe;s.
Before the start of integration:
(i) AC counter is reset,
(ii) AC clock mode is selected (such as 10 kc, 100 kc,
1000 kc). |
(iii) AC time constant ls éelected (such as seconds,
milliseconds, etc.),
- (iv) The values of DAC functions for the second interval
are loaded.
'(For the oscillator problem the clock mode was lOQO ke
and the time constant was 0.1 sec.) |

Now the integration is started by selecting the counter SC.

Fig. A.4 describes the flow of events.
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As the first counter pulse comes in, it enables all the
DAC channels. Thus, values of all the co—efficients for the
second interval are made,avéilable. Ail the}track and store
amélifiers_go into store mode thus preserving the values at the
instant of the counter pulse. ‘The DC now selects and reads
the ADC channels one by one. ThisAis followed by serial loading
of DAC channels with.the values for the next interval. This
completes the operationsAfor one interval and the DC waits

for next counter pulse. The process repeats until the counter

SC is deselected.
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APPENDIX B

For a system represented by

g"}'{‘ Yy = f(Yrulx) ?

-with criterion function ¢(y(0),y(L)), the functional relation-
ship between a variation in ¢ and the variation 'Su' in control

u is obtained as (ref. equation (3.37))

d¢ = M H Sudx . (B.1)
(s}

Let us assume that ¢ is to be maximized. In the Gradient
Technique the hope that the iterations would converge is
based on obtaining a positive d¢ as a result of every iteration

cycle. Thus we can stipulate three necessary conditions for

su(x),
(1) Sgn Su(x) = 8gn H (x) , for a finite length and
Su(x) = 0 for the rest of x. This assures d¢ 20, (B.2)
(ii) u, < u(x? + du(x) < Uy
(1ii)  SY < su(x),su(x) > dx << 1 .
o

~

This assures that the variation u(x) is small enough'to
justify the first order approximations made in the derivation
of (3.37)

Let us define u, - u‘x) = Gum(x) and u,, - u(x)_ = GuM(x).

M

‘The bounds on Su(x) can now be specified as

'éum < Su(x) < GuM
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Since u(x) is an admissible control vector

u < u{x) < u

m M °
Hence

Gum(x) < 0,
and 6uM(x) > 0 .

Let Su(x) be any function that satisfies the first and
the last condition stated in (B.2). (See Fig. B.1l) The
function Su can be expressed as a sum of a functionAGup and

Gun such that

Su_(x > 0
p( ) 2
Gun(x) < 0 ,
and du = 68u_ + 8u .
o) n

The variations Gup and 6un also satisfy the first and the
last conditions stated in (B.2). The functions Gup(x) and

Gun(x) can be further divided so that
5up(x)’ = fu (x) + Su (x)

Gun(x) = Sqna(x) + Gun

A

t(x) L4

where du_, (x) and du_, (x) are the truncated sections of §u
pt nt . : P

and 6un respectively.

Sgn du__ (x)

‘'We. have San Su
gn Suy, (x) pa

and Sgn Gun(x) = Sgn 6una(x)

ThusAsupa(x) and éuna(x) satisfies the first and the last
/ condition stated in (B.2). They also satisfy the second

condition (See. Fig. B.1l).
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FIGURE B-1
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The same is true about 6ua where
du (x) = Gupa (x) + du _(x) (B.3)

'Thg function Gua(X) is a truncated part of du(x). Henée the
truncation does not violate the conditions for convergence of
thé Gradient Method.

However with more than one target function, such as ¢ and
2, Su is composed of more than one component such as

du = v¢6u¢ + \)QﬁuQ (B.4)

and the functional relationship is (See. (3.43).
d¢ = v¢ fL H¢5u¢dx + VQ fL H¢6undx (B.5)
o u (o] u ) -

In such a case Sézaffects d¢ (and 6ﬁ¢ affect d2) . The
condition (i) holds true for the first term on the R.H.S. of
equation (B.5). However, the second term does not necessarily
satisfy the condition (i). Besides, 6u¢ and GuQ are not trun-
cated separateiy. The truncation of du does not provide any
information as to how the truncation affects tﬁe components
68 and dug . Thus the argument about convergence breaks down.

It is observed during the numericai calculations on com-
puter that before the control distributions reach the limiting
values the first order gradient technique (using first
estiﬁate of du) yields improvement in both ¢ and @ simultaneously.
However, once the control variables reach the boundary only
one of the two improves and the other starts deteriorating.

;Thus a simultaneous convergence breaks down.



TABLE 1

Totallléngth‘ ' Uniform distribution for Optimum attenuation
of line 'L’ 180 degree phase shift ' ’
we(x) = r(x)
60 .73 10
70 .63 8
99 .44 6.3
140 .32 5.6
189 .235 5.3
300 .15 5.4
TABLE 2
Total length of a line 'L' = 140
Uniform line inductance Optimum attenuation
wl (x)
0 5.6
.02 4.2
.05 2.15
.10 1.15

In each case 0.8 £ r(x), wec(x) < 0.08.
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